おそらく,帝星を用いるインディアンサークル法についても,方位測定に用いられたという実態はなく,以下の天球を説明する論理説明の一部でしかない。その理由は,太陽を使う場合より目見当で影を引く分,精度が落ちるのは明らかである。また帝星でこの観測ができるのは一年で限られた時期しかない。太陽を使う場合より観測条件が限られ,精度の劣る方法をあえて用いる必然性は無い。この方法が論文などで用いられた可能性のある観測方法として取り上げられるのは,「古代に北極星は無かった」という誤認からである。
【欲知北極樞,璿周四極。常以夏至夜半時北極南游所極,冬至夜半時北游所極,冬至日加酉之時西游所極,日加卯之時東游所極。此北極璿璣四游。正北極璿璣之中,正北天之中。正極之所游,冬至日加酉之時,立八尺表,以繩繫表顛,希望北極中大星,引繩致地而識之。又到旦,明日加卯之時,復引繩希望之,首及繩致地而識其端,相去二尺三寸。故東西極二萬三千里,其兩端相去正東西。中折之以指表,正南北。加此時者,皆以漏揆度之。此東、西、南、北之時。其繩致地所識,去表丈三寸,故天之中去周十萬三千里。何以知其南北極之時?以冬至夜半北游所極也北過天中萬一千五百里,以夏至南游所極不及天中萬一千五百里。此皆以繩繫表顛而希望之,北極至地所識丈一尺四寸半,故去周十二萬四千五百里,過天中萬一千五百里;其南極至地所識九尺一寸半,故去周九萬一千五百里,其南不及天中萬一千五百里。此璿璣四極南北過不及之法,東、西、南、北之正勾。
周去極十萬三千里。日去人十六萬七千里。夏至去周一萬六千里。夏至日道徑二十三萬八千里,周七十一萬四千里。春、秋分日道徑三十五萬七千里,周一百七萬一千里。冬至日道徑四十七萬六千里,周一百四十二萬八千里。日光四極八十一萬里,周二百四十三萬里。從周南三十萬二千里。
璿璣徑二萬三千里,周六萬九千里。此陽絕陰彰,故不生萬物。其術曰,立正勾定之。以日始出,立表而識其晷。日入,復識其晷。晷之兩端相直者,正東西也。中折之指表者,正南北也。極下不生萬物。何以知之?冬至之日去夏至十一萬九千里,萬物盡死;夏至之日去北極十一萬九千里,是以知極下不生萬物。北極左右,夏有不釋之冰。
春分、秋分,日在中衡。春分以往日益北,五萬九千五百里而夏至。秋分以往日益南,五萬九千五百里而冬至。中衡去周七萬五千五百里。中衡左右冬有不死之草,夏長之類。
此陽彰陰微,故萬物不死,五穀一歲再熟。
凡北極之左右,物有朝生暮獲。】 [周髀算經・下巻]